自动驾驶辅助系统利用车载传感器和车辆网络技术获取道路、车辆位置、障碍物、车辆自身位置等信息,并将获得的信息传输到车辆控制中心,为独立驾驶汽车提供决策依据。简而言之,智能驾驶辅助是一个通过各种传感器数据和高精度地图独立驾驶汽车的系统。
自动驾驶使用的技术有7点:
1、识别技术:
(1)、最常用的是摄像头,它和人类的眼睛最接近,可以看清有颜色的标识、物体,看得懂字体,分得清红绿灯。但是缺点也不少,比如在夜晚或恶劣的天气下视力就严重下降,也不擅长远距离观察。
(2)、其次是颇富争议的LiDAR,即激光雷达。比较常见的是在车顶,像是顶不停旋转的帽子。原理很简单,就是通过计算激光束的反射时间和波长,可以完成绘制周边障碍物的3D图。而短板则是无法识别图像和颜色。
(3)、最后是毫米波雷达,因为它可以全天候工作,这使得它不可或缺,即便它无法识别高度,分辨率不高,也难以成像。但它凭借其穿透尘雾、雨雪的硬本领,站稳一席之地。
2、决策技术:
通过识别得到了周边环境,接下来就要充分利用这些信息进行理解分析,决定自己该如何走下一步。要完成这项任务的就是最强大脑。
跟人类的大脑一样,我们不是天生就会开车,也不是拿到驾照就成老司机了。需要一定的知识积累,自动驾驶机器人也同样需要。处理这些信息有两种方式:专家规则式和AI式。
(1)、专家规则式,英文叫rule-based。即提前编写好规则,当需要做决定的时候必须严格遵守这些规则。比如准备超车变道时,需要满足以下条件:道路半径大于500R(弯道不变道);跟目标车道上的前后车的距离都在20m以上;比后车的车速慢不超过5km/h,即可超车变道。
(2)、AI式,就是一直很火的人工智能Artificial Intelligence。模仿人类的大脑,通过AI算法对场景进行理解。或提前通过大量的犯错积累经验。通过AI式积累知识库,会让AI的反应更加灵活。
3、定位技术:
只有知道自己在哪里,才知道自己去哪里。目前自动驾驶的技术基本上都源自机器人,自动驾驶可以看做是轮式机器人加一个舒适的沙发。机器人系统中定位和路径规划是一个问题,没有定位,就无法规划路径。
对机器人系统来说,定位主要靠SLAM与先验地图(PriorMap)的交叉对比。SLAM是SimultaneousLocalizationandMapping的缩写,意为同时定位与建图。它是指运动物体根据传感器的信息,一边计算自身位置,一边构建环境地图的过程。目前,SLAM的应用领域主要有机器人、虚拟现实和增强现实。其用途包括传感器自身的定位,以及后续的路径规划、场景理解。
4、通信安全技术:
试想如果被黑客入侵,控制了你的自动驾驶车,可以监听到你的秘密谈话。黑客可以通过影响传感器的数据而影响决策,或直接介入判断机制进而影响行驶轨道,像GPS、摄像头、激光雷达、毫米波雷达、IMU等常见传感器装置,都可以被黑客干扰进而影响自动驾驶的判断机制和行驶轨道。比如攻击激光雷达让其辨别不了即时性不良数据,或者是试着干扰他们长期积累的聚合数据等等。
5、人机交互技术:
虽说我们对自动驾驶的印象大多是,不需要人们的干涉,它就能把我们送到任何想去的地方。但是很遗憾,目前的自动驾驶系统还做不到这一点。
遇到自动驾驶驾驭不了的场景,便会呼唤你接替它的工作。这时,HMI(人机界面)就发挥作用了。它的目标是,用最直观最便捷的方式通知我们,让驾驶员尽快注意到。
此外,通过观察分析驾驶员的面部表情和动作,判断其困倦状态,并通过给驾驶员提供感兴趣的话题等方式予以提醒,也是人机交互多样化发展的一个例子。还有些不仅局限于和车内人的互动,也可以与路上行人进行互动,表达让行等意愿。
6、高精度地图:
基于美国SAE协会对自动驾驶技术等级的划分,在Level2以下的辅助驾驶阶段(ADAS阶段),高精度地图对整个辅助驾驶系统来说是一个可选项。当自动驾驶技术发展到 Level3及以上时,要求车辆在高速公路、停车场泊车等特殊场景中实现自动驾驶,高精度地图的重要性开始凸显。业内公认要想实现Level3级别的自动驾驶,高精度地图将成为必选项。
7、5G/V2X技术:
车联网V2X就是把车连到网或者把车连成网,包括汽车对汽车(V2V)、汽车对基础设施(V2I)、汽车对互联网(V2N)和汽车对行人(V2P)。
通过V2X网络,相当于自动驾驶打通外部大脑,提供了丰富、及时的外部信息输入,能够有效弥补单车智能的感知盲点。